Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
99 tokens/sec
Gemini 2.5 Pro Premium
56 tokens/sec
GPT-5 Medium
26 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
106 tokens/sec
DeepSeek R1 via Azure Premium
99 tokens/sec
GPT OSS 120B via Groq Premium
507 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Non-asymptotic convergence rates for the plug-in estimation of risk measures (2003.10479v2)

Published 23 Mar 2020 in q-fin.RM and math.OC

Abstract: Let $\rho$ be a general law--invariant convex risk measure, for instance the average value at risk, and let $X$ be a financial loss, that is, a real random variable. In practice, either the true distribution $\mu$ of $X$ is unknown, or the numerical computation of $\rho(\mu)$ is not possible. In both cases, either relying on historical data or using a Monte-Carlo approach, one can resort to an i.i.d.\ sample of $\mu$ to approximate $\rho(\mu)$ by the finite sample estimator $\rho(\mu_N)$ (where $\mu_N$ denotes the empirical measure of $\mu$). In this article we investigate convergence rates of $\rho(\mu_N)$ to $\rho(\mu)$. We provide non-asymptotic convergence rates for both the deviation probability and the expectation of the estimation error. The sharpness of these convergence rates is analyzed. Our framework further allows for hedging, and the convergence rates we obtain depend neither on the dimension of the underlying assets, nor on the number of options available for trading.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.