Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Projective toric codes (2003.10357v2)

Published 23 Mar 2020 in math.AG, cs.IT, and math.IT

Abstract: Any integral convex polytope $P$ in $\mathbb{R}N$ provides a $N$-dimensional toric variety $X_P$ and an ample divisor $D_P$ on this variety. This paper gives an explicit construction of the algebraic geometric error-correcting code on $X_P$ , obtained by evaluating global section of $\mathcal{L}(D_P)$ on every rational point of $X_P$. This work presents an extension of toric codes analogous to the one of Reed-Muller codes into projective ones, by evaluating on the whole variety instead of considering only points with non-zero coordinates. The dimension of the code is given in terms of the number of integral points in the polytope $P$ and an algorithmic technique to get a lowerbound on the minimum distance is described.

Citations (4)

Summary

We haven't generated a summary for this paper yet.