Projective toric codes
Abstract: Any integral convex polytope $P$ in $\mathbb{R}N$ provides a $N$-dimensional toric variety $X_P$ and an ample divisor $D_P$ on this variety. This paper gives an explicit construction of the algebraic geometric error-correcting code on $X_P$ , obtained by evaluating global section of $\mathcal{L}(D_P)$ on every rational point of $X_P$. This work presents an extension of toric codes analogous to the one of Reed-Muller codes into projective ones, by evaluating on the whole variety instead of considering only points with non-zero coordinates. The dimension of the code is given in terms of the number of integral points in the polytope $P$ and an algorithmic technique to get a lowerbound on the minimum distance is described.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.