Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Second order adjoint sensitivity analysis in variational data assimilation for tsunami models (2003.10210v1)

Published 15 Mar 2020 in math.NA, cs.NA, math.FA, and math.OC

Abstract: We mathematically derive the sensitivity of data assimilation results for tsunami modelling, to perturbations in the observation operator. We consider results of variational data assimilation schemes on the one dimensional shallow water equations for (i) initial condition reconstruction, and (ii) bathymetry detection as presented in Kevlahan et al. (2019, 2020). We use variational methods to derive the Hessian of a cost function J representing the error between forecast solutions and observations. Using this Hessian representation and methods outlined by Shutyaev et al. (2017, 2018), we mathematically derive the sensitivity of arbitrary response functions to perturbations in observations for case (i) and (ii) respectively. Such analyses potentially substantiate results from earlier work, on sufficient conditions for convergence, and sensitivity of the propagating surface wave to errors in bathymetry reconstruction. Such sensitivity analyses would illustrate whether particular elements of the observation network are more critical than others, and help minimise extraneous costs for observation collection, and efficiency of predictive models.

Summary

We haven't generated a summary for this paper yet.