Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lower Bounds on the Running Time of Two-Way Quantum Finite Automata and Sublogarithmic-Space Quantum Turing Machines (2003.09877v2)

Published 22 Mar 2020 in cs.CC

Abstract: The two-way finite automaton with quantum and classical states (2QCFA), defined by Ambainis and Watrous, is a model of quantum computation whose quantum part is extremely limited; however, as they showed, 2QCFA are surprisingly powerful: a 2QCFA with only a single-qubit can recognize the language $L_{pal}={w \in {a,b}*:w \text{ is a palindrome}}$ with bounded error in expected time $2{O(n)}$, on inputs of length $n$. We prove that their result essentially cannot be improved upon: a 2QCFA (of any size) cannot recognize $L_{pal}$ with bounded error in expected time $2{o(n)}$. To our knowledge, this is the first example of a language that can be recognized with bounded error by a 2QCFA in exponential time but not in subexponential time. Moreover, we prove that a quantum Turing machine (QTM) running in space $o(\log n)$ and expected time $2{n{1-\Omega(1)}}$ cannot recognize $L_{pal}$ with bounded error; again, this is the first lower bound of its kind. Far more generally, we establish a lower bound on the running time of any 2QCFA or $o(\log n)$-space QTM that recognizes any language $L$ in terms of a natural "hardness measure" of $L$. This allows us to exhibit a large family of languages for which we have asymptotically matching lower and upper bounds on the running time of any such 2QCFA or QTM recognizer.

Citations (4)

Summary

We haven't generated a summary for this paper yet.