Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large cycles in essentially 4-connected graphs (2003.09750v1)

Published 21 Mar 2020 in math.CO

Abstract: Tutte proved that every 4-connected planar graph contains a Hamilton cycle, but there are 3-connected $n$-vertex planar graphs whose longest cycles have length $\Theta(n{\log_32})$. On the other hand, Jackson and Wormald in 1992 proved that an essentially 4-connected $n$-vertex planar graph contains a cycle of length at least $(2n+4)/5$, which was recently improved to $5(n+2)/8$ by Fabrici {\it et al}. In this paper, we improve this bound to $\lceil (2n+6)/3\rceil$ for $n\ge 6$, which is best possible, by proving a quantitative version of a result of Thomassen on Tutte paths.

Summary

We haven't generated a summary for this paper yet.