Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Technique for Improving the Computation of Functions of Triangular Matrices (2003.09727v2)

Published 21 Mar 2020 in math.NA and cs.NA

Abstract: We propose a simple technique that, if combined with algorithms for computing functions of triangular matrices, can make them more efficient. Basically, such a technique consists in a specific scaling similarity transformation that reduces the departure from normality of a triangular matrix, thus decreasing its norm and in general its function condition number. It can easily be extended to non-triangular matrices, provided that it is combined with algorithms involving a prior Schur decomposition. Situations where the technique should be used or not will be discussed in detail. Special attention is devoted to particular algorithms like the inverse scaling and squaring to the matrix logarithm and the scaling and squaring to the matrix exponential. The advantages of our proposal are supported by theoretical results and illustrated with numerical experiments.

Citations (1)

Summary

We haven't generated a summary for this paper yet.