Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Abstraction, Up-to Techniques and Games for Systems of Fixpoint Equations (2003.08877v2)

Published 19 Mar 2020 in cs.LO

Abstract: Systems of fixpoint equations over complete lattices, consisting of (mixed) least and greatest fixpoint equations, allow one to express a number of verification tasks such as model-checking of various kinds of specification logics or the check of coinductive behavioural equivalences. In this paper we develop a theory of approximation for systems of fixpoint equations in the style of abstract interpretation: a system over some concrete domain is abstracted to a system in a suitable abstract domain, with conditions ensuring that the abstract solution represents a sound/complete overapproximation of the concrete solution. Interestingly, up-to techniques, a classical approach used in coinductive settings to obtain easier or feasible proofs, can be interpreted as abstractions in a way that they naturally fit in our framework and extend to systems of equations. Additionally, relying on the approximation theory, we can provide a characterisation of the solution of systems of fixpoint equations over complete lattices in terms of a suitable parity game, generalising some recent work that was restricted to continuous lattices. The game view opens the way to the development of on-the-fly algorithms for characterising the solution of such equation systems.

Citations (7)

Summary

We haven't generated a summary for this paper yet.