Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Virtual Control Contraction Metrics: Convex Nonlinear Feedback Design via Behavioral Embedding (2003.08513v2)

Published 18 Mar 2020 in eess.SY, cs.SY, and math.OC

Abstract: This paper presents a systematic approach to nonlinear state-feedback control design that has three main advantages: (i) it ensures exponential stability and $ \mathcal{L}_2 $-gain performance with respect to a user-defined set of reference trajectories, and (ii) it provides constructive conditions based on convex optimization and a path-integral-based control realization, and (iii) it is less restrictive than previous similar approaches. In the proposed approach, first a virtual representation of the nonlinear dynamics is constructed for which a behavioral (parameter-varying) embedding is generated. Then, by introducing a virtual control contraction metric, a convex control synthesis formulation is derived. Finally, a control realization with a virtual reference generator is computed, which is guaranteed to achieve exponential stability and $ \mathcal{L}_2 $-gain performance for all trajectories of the targeted reference behavior. We show that the proposed methodology is a unified generalization of the two distinct categories of linear-parameter-varying (LPV) state-feedback control approaches: global and local methods. Moreover, it provides rigorous stability and performance guarantees as a method for nonlinear tracking control, while such properties are not guaranteed for tracking control using standard LPV approaches.

Citations (8)

Summary

We haven't generated a summary for this paper yet.