Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Artificial Intelligence-Based System to Assess Nutrient Intake for Hospitalised Patients (2003.08273v1)

Published 18 Mar 2020 in cs.CV, cs.LG, and eess.IV

Abstract: Regular monitoring of nutrient intake in hospitalised patients plays a critical role in reducing the risk of disease-related malnutrition. Although several methods to estimate nutrient intake have been developed, there is still a clear demand for a more reliable and fully automated technique, as this could improve data accuracy and reduce both the burden on participants and health costs. In this paper, we propose a novel system based on AI to accurately estimate nutrient intake, by simply processing RGB Depth (RGB-D) image pairs captured before and after meal consumption. The system includes a novel multi-task contextual network for food segmentation, a few-shot learning-based classifier built by limited training samples for food recognition, and an algorithm for 3D surface construction. This allows sequential food segmentation, recognition, and estimation of the consumed food volume, permitting fully automatic estimation of the nutrient intake for each meal. For the development and evaluation of the system, a dedicated new database containing images and nutrient recipes of 322 meals is assembled, coupled to data annotation using innovative strategies. Experimental results demonstrate that the estimated nutrient intake is highly correlated (> 0.91) to the ground truth and shows very small mean relative errors (< 20%), outperforming existing techniques proposed for nutrient intake assessment.

Citations (43)

Summary

We haven't generated a summary for this paper yet.