Many cliques with few edges and bounded maximum degree
Abstract: Generalized Tur\'an problems have been a central topic of study in extremal combinatorics throughout the last few decades. One such problem, maximizing the number of cliques of a fixed order in a graph with fixed number of vertices and bounded maximum degree, was recently completely resolved by Chase. Kirsch and Radcliffe raised a natural variant of this problem where the number of edges is fixed instead of the number of vertices. In this paper, we determine the maximum number of cliques of a fixed order in a graph with fixed number of edges and bounded maximum degree, resolving a conjecture by Kirsch and Radcliffe. We also give a complete characterization of the extremal graphs.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.