Probabilities with Gaps and Gluts
Abstract: Belnap-Dunn logic (BD), sometimes also known as First Degree Entailment, is a four-valued propositional logic that complements the classical truth values of True and False with two non-classical truth values Neither and Both. The latter two are to account for the possibility of the available information being incomplete or providing contradictory evidence. In this paper, we present a probabilistic extension of BD that permits agents to have probabilistic beliefs about the truth and falsity of a proposition. We provide a sound and complete axiomatization for the framework defined and also identify policies for conditionalization and aggregation. Concretely, we introduce four-valued equivalents of Bayes' and Jeffrey updating and also suggest mechanisms for aggregating information from different sources.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.