Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GraphTCN: Spatio-Temporal Interaction Modeling for Human Trajectory Prediction (2003.07167v6)

Published 16 Mar 2020 in cs.CV

Abstract: Predicting the future paths of an agent's neighbors accurately and in a timely manner is central to the autonomous applications for collision avoidance. Conventional approaches, e.g., LSTM-based models, take considerable computational costs in the prediction, especially for the long sequence prediction. To support more efficient and accurate trajectory predictions, we propose a novel CNN-based spatial-temporal graph framework GraphTCN, which models the spatial interactions as social graphs and captures the spatio-temporal interactions with a modified temporal convolutional network. In contrast to conventional models, both the spatial and temporal modeling of our model are computed within each local time window. Therefore, it can be executed in parallel for much higher efficiency, and meanwhile with accuracy comparable to best-performing approaches. Experimental results confirm that our model achieves better performance in terms of both efficiency and accuracy as compared with state-of-the-art models on various trajectory prediction benchmark datasets.

Citations (41)

Summary

We haven't generated a summary for this paper yet.