Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PS-RCNN: Detecting Secondary Human Instances in a Crowd via Primary Object Suppression (2003.07080v1)

Published 16 Mar 2020 in cs.CV, cs.LG, and eess.IV

Abstract: Detecting human bodies in highly crowded scenes is a challenging problem. Two main reasons result in such a problem: 1). weak visual cues of heavily occluded instances can hardly provide sufficient information for accurate detection; 2). heavily occluded instances are easier to be suppressed by Non-Maximum-Suppression (NMS). To address these two issues, we introduce a variant of two-stage detectors called PS-RCNN. PS-RCNN first detects slightly/none occluded objects by an R-CNN module (referred as P-RCNN), and then suppress the detected instances by human-shaped masks so that the features of heavily occluded instances can stand out. After that, PS-RCNN utilizes another R-CNN module specialized in heavily occluded human detection (referred as S-RCNN) to detect the rest missed objects by P-RCNN. Final results are the ensemble of the outputs from these two R-CNNs. Moreover, we introduce a High Resolution RoI Align (HRRA) module to retain as much of fine-grained features of visible parts of the heavily occluded humans as possible. Our PS-RCNN significantly improves recall and AP by 4.49% and 2.92% respectively on CrowdHuman, compared to the baseline. Similar improvements on Widerperson are also achieved by the PS-RCNN.

Citations (26)

Summary

We haven't generated a summary for this paper yet.