Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Collaborative Motion Prediction via Neural Motion Message Passing (2003.06594v1)

Published 14 Mar 2020 in cs.CV

Abstract: Motion prediction is essential and challenging for autonomous vehicles and social robots. One challenge of motion prediction is to model the interaction among traffic actors, which could cooperate with each other to avoid collisions or form groups. To address this challenge, we propose neural motion message passing (NMMP) to explicitly model the interaction and learn representations for directed interactions between actors. Based on the proposed NMMP, we design the motion prediction systems for two settings: the pedestrian setting and the joint pedestrian and vehicle setting. Both systems share a common pattern: we use an individual branch to model the behavior of a single actor and an interactive branch to model the interaction between actors, while with different wrappers to handle the varied input formats and characteristics. The experimental results show that both systems outperform the previous state-of-the-art methods on several existing benchmarks. Besides, we provide interpretability for interaction learning.

Citations (92)

Summary

We haven't generated a summary for this paper yet.