Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pyramidal Edge-maps and Attention based Guided Thermal Super-resolution (2003.06216v2)

Published 13 Mar 2020 in cs.CV

Abstract: Guided super-resolution (GSR) of thermal images using visible range images is challenging because of the difference in the spectral-range between the images. This in turn means that there is significant texture-mismatch between the images, which manifests as blur and ghosting artifacts in the super-resolved thermal image. To tackle this, we propose a novel algorithm for GSR based on pyramidal edge-maps extracted from the visible image. Our proposed network has two sub-networks. The first sub-network super-resolves the low-resolution thermal image while the second obtains edge-maps from the visible image at a growing perceptual scale and integrates them into the super-resolution sub-network with the help of attention-based fusion. Extraction and integration of multi-level edges allows the super-resolution network to process texture-to-object level information progressively, enabling more straightforward identification of overlapping edges between the input images. Extensive experiments show that our model outperforms the state-of-the-art GSR methods, both quantitatively and qualitatively.

Citations (2)

Summary

We haven't generated a summary for this paper yet.