Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comb Diagrams for Discrete-Time Feedback (2003.06214v1)

Published 13 Mar 2020 in cs.LO

Abstract: The data for many useful bidirectional constructions in applied category theory (optics, learners, games, quantum combs) can be expressed in terms of diagrams containing "holes" or "incomplete parts", sometimes known as comb diagrams. We give a possible formalization of what these circuits with incomplete parts represent in terms of symmetric monoidal categories, using the dinaturality equivalence relations arising from a coend. Our main idea is to extend this formal description to allow for infinite circuits with holes indexed by the natural numbers. We show how infinite combs over an arbitrary symmetric monoidal category form again a symmetric monoidal category where notions of delay and feedback can be considered. The constructions presented here are still preliminary work.

Citations (15)

Summary

We haven't generated a summary for this paper yet.