Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Wide Dataset of Ear Shapes and Pinna-Related Transfer Functions Generated by Random Ear Drawings (2003.06182v1)

Published 13 Mar 2020 in eess.AS, cs.SD, and physics.class-ph

Abstract: Head-related transfer functions (HRTFs) individualization is a key matter in binaural synthesis. However, currently available databases are limited in size compared to the high dimensionality of the data. Hereby, we present the process of generating a synthetic dataset of 1000 ear shapes and matching sets of pinna-related transfer functions (PRTFs), named WiDESPREaD (wide dataset of ear shapes and pinna-related transfer functions obtained by random ear drawings) and made freely available to other researchers. Contributions in this article are three-fold. First, from a proprietary dataset of 119 three-dimensional left-ear scans, we build a matching dataset of PRTFs by performing fast-multipole boundary element method (FM-BEM) calculations. Second, we investigate the underlying geometry of each type of high-dimensional data using principal component analysis (PCA). We find that this linear machine learning technique performs better at modeling and reducing data dimensionality on ear shapes than on matching PRTF sets. Third, based on these findings, we devise a method to generate an arbitrarily large synthetic database of PRTF sets that relies on the random drawing of ear shapes and subsequent FM-BEM computations.

Citations (9)

Summary

We haven't generated a summary for this paper yet.