Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Adversarial Objective for Scalable Exploration (2003.06082v4)

Published 13 Mar 2020 in cs.RO, cs.AI, cs.CV, and cs.LG

Abstract: Model-based curiosity combines active learning approaches to optimal sampling with the information gain based incentives for exploration presented in the curiosity literature. Existing model-based curiosity methods look to approximate prediction uncertainty with approaches which struggle to scale to many prediction-planning pipelines used in robotics tasks. We address these scalability issues with an adversarial curiosity method minimizing a score given by a discriminator network. This discriminator is optimized jointly with a prediction model and enables our active learning approach to sample sequences of observations and actions which result in predictions considered the least realistic by the discriminator. We demonstrate progressively increasing advantages as compute is restricted of our adversarial curiosity approach over leading model-based exploration strategies in simulated environments. We further demonstrate the ability of our adversarial curiosity method to scale to a robotic manipulation prediction-planning pipeline where we improve sample efficiency and prediction performance for a domain transfer problem.

Citations (2)

Summary

We haven't generated a summary for this paper yet.