Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Analyzing Visual Representations in Embodied Navigation Tasks (2003.05993v1)

Published 12 Mar 2020 in cs.CV, cs.AI, and cs.LG

Abstract: Recent advances in deep reinforcement learning require a large amount of training data and generally result in representations that are often over specialized to the target task. In this work, we present a methodology to study the underlying potential causes for this specialization. We use the recently proposed projection weighted Canonical Correlation Analysis (PWCCA) to measure the similarity of visual representations learned in the same environment by performing different tasks. We then leverage our proposed methodology to examine the task dependence of visual representations learned on related but distinct embodied navigation tasks. Surprisingly, we find that slight differences in task have no measurable effect on the visual representation for both SqueezeNet and ResNet architectures. We then empirically demonstrate that visual representations learned on one task can be effectively transferred to a different task.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.