Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross-modal Multi-task Learning for Graphic Recognition of Caricature Face (2003.05787v1)

Published 10 Mar 2020 in cs.CV

Abstract: Face recognition of realistic visual images has been well studied and made a significant progress in the recent decade. Unlike the realistic visual images, the face recognition of the caricatures is far from the performance of the visual images. This is largely due to the extreme non-rigid distortions of the caricatures introduced by exaggerating the facial features to strengthen the characters. The heterogeneous modalities of the caricatures and the visual images result the caricature-visual face recognition is a cross-modal problem. In this paper, we propose a method to conduct caricature-visual face recognition via multi-task learning. Rather than the conventional multi-task learning with fixed weights of tasks, this work proposes an approach to learn the weights of tasks according to the importance of tasks. The proposed multi-task learning with dynamic tasks weights enables to appropriately train the hard task and easy task instead of being stuck in the over-training easy task as conventional methods. The experimental results demonstrate the effectiveness of the proposed dynamic multi-task learning for cross-modal caricature-visual face recognition. The performances on the datasets CaVI and WebCaricature show the superiority over the state-of-art methods.

Summary

We haven't generated a summary for this paper yet.