Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A deep belief network-based method to identify proteomic risk markers for Alzheimer disease (2003.05776v1)

Published 11 Mar 2020 in q-bio.QM, cs.LG, and stat.ML

Abstract: While a large body of research has formally identified apolipoprotein E (APOE) as a major genetic risk marker for Alzheimer disease, accumulating evidence supports the notion that other risk markers may exist. The traditional Alzheimer-specific signature analysis methods, however, have not been able to make full use of rich protein expression data, especially the interaction between attributes. This paper develops a novel feature selection method to identify pathogenic factors of Alzheimer disease using the proteomic and clinical data. This approach has taken the weights of network nodes as the importance order of signaling protein expression values. After generating and evaluating the candidate subset, the method helps to select an optimal subset of proteins that achieved an accuracy greater than 90%, which is superior to traditional machine learning methods for clinical Alzheimer disease diagnosis. Besides identifying a proteomic risk marker and further reinforce the link between metabolic risk factors and Alzheimer disease, this paper also suggests that apidonectin-linked pathways are a possible therapeutic drug target.

Citations (6)

Summary

We haven't generated a summary for this paper yet.