Papers
Topics
Authors
Recent
2000 character limit reached

Using machine learning to speed up new and upgrade detector studies: a calorimeter case

Published 11 Mar 2020 in physics.ins-det, cs.LG, hep-ex, and physics.comp-ph | (2003.05118v1)

Abstract: In this paper, we discuss the way advanced machine learning techniques allow physicists to perform in-depth studies of the realistic operating modes of the detectors during the stage of their design. Proposed approach can be applied to both design concept (CDR) and technical design (TDR) phases of future detectors and existing detectors if upgraded. The machine learning approaches may speed up the verification of the possible detector configurations and will automate the entire detector R&D, which is often accompanied by a large number of scattered studies. We present the approach of using machine learning for detector R&D and its optimisation cycle with an emphasis on the project of the electromagnetic calorimeter upgrade for the LHCb detector\cite{lhcls3}. The spatial reconstruction and time of arrival properties for the electromagnetic calorimeter were demonstrated.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.