Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parallel Robust Computation of Generalized Eigenvectors of Matrix Pencils (2003.04776v1)

Published 10 Mar 2020 in cs.MS, cs.DC, cs.NA, and math.NA

Abstract: In this paper we consider the problem of computing generalized eigenvectors of a matrix pencil in real Schur form. In exact arithmetic, this problem can be solved using substitution. In practice, substitution is vulnerable to floating-point overflow. The robust solvers xTGEVC in LAPACK prevent overflow by dynamically scaling the eigenvectors. These subroutines are sequential scalar codes which compute the eigenvectors one by one. In this paper we discuss how to derive robust blocked algorithms. The new StarNEig library contains a robust task-parallel solver Zazamoukh which runs on top of StarPU. Our numerical experiments show that Zazamoukh achieves a super-linear speedup compared with DTGEVC for sufficiently large matrices.

Citations (3)

Summary

We haven't generated a summary for this paper yet.