Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Meshfree Lagrangian Method for Flow on Manifolds (2003.04767v1)

Published 10 Mar 2020 in math.NA, cs.NA, and physics.flu-dyn

Abstract: In this paper, we present a novel meshfree framework for fluid flow simulations on arbitrarily curved surfaces. First, we introduce a new meshfree Lagrangian framework to model flow on surfaces. Meshfree points or particles, which are used to discretize the domain, move in a Lagrangian sense along the given surface. This is done without discretizing the bulk around the surface, without parametrizing the surface, and without a background mesh. A key novelty that is introduced is the handling of flow with evolving free boundaries on a curved surface. The use of this framework to model flow on moving and deforming surfaces is also introduced. Then, we present the application of this framework to solve fluid flow problems defined on surfaces numerically. In combination with a meshfree Generalized Finite Difference Method (GFDM), we introduce a strong form meshfree collocation scheme to solve the Navier-Stokes equations posed on manifolds. Benchmark examples are proposed to validate the Lagrangian framework and the surface Navier-Stokes equations with the presence of free boundaries.

Citations (16)

Summary

We haven't generated a summary for this paper yet.