Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AL2: Progressive Activation Loss for Learning General Representations in Classification Neural Networks (2003.03633v1)

Published 7 Mar 2020 in cs.LG, cs.CV, and stat.ML

Abstract: The large capacity of neural networks enables them to learn complex functions. To avoid overfitting, networks however require a lot of training data that can be expensive and time-consuming to collect. A common practical approach to attenuate overfitting is the use of network regularization techniques. We propose a novel regularization method that progressively penalizes the magnitude of activations during training. The combined activation signals produced by all neurons in a given layer form the representation of the input image in that feature space. We propose to regularize this representation in the last feature layer before classification layers. Our method's effect on generalization is analyzed with label randomization tests and cumulative ablations. Experimental results show the advantages of our approach in comparison with commonly-used regularizers on standard benchmark datasets.

Citations (2)

Summary

We haven't generated a summary for this paper yet.