Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
112 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Variational InfoMax Learning Objective (2003.03524v1)

Published 7 Mar 2020 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: Bayesian Inference and Information Bottleneck are the two most popular objectives for neural networks, but they can be optimised only via a variational lower bound: the Variational Information Bottleneck (VIB). In this manuscript we show that the two objectives are actually equivalent to the InfoMax: maximise the information between the data and the labels. The InfoMax representation of the two objectives is not relevant only per se, since it helps to understand the role of the network capacity, but also because it allows us to derive a variational objective, the Variational InfoMax (VIM), that maximises them directly without resorting to any lower bound. The theoretical improvement of VIM over VIB is highlighted by the computational experiments, where the model trained by VIM improves the VIB model in three different tasks: accuracy, robustness to noise and representation quality.

Summary

We haven't generated a summary for this paper yet.