Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical Beamforming for FDD Downlink Massive MIMO via Spatial Information Extraction and Beam Selection (2003.03041v1)

Published 6 Mar 2020 in cs.IT and math.IT

Abstract: In this paper, we study the beamforming design problem in frequency-division duplexing (FDD) downlink massive MIMO systems, where instantaneous channel state information (CSI) is assumed to be unavailable at the base station (BS). We propose to extract the information of the angle-of-departures (AoDs) and the corresponding large-scale fading coefficients (a.k.a. spatial information) of the downlink channel from the uplink channel estimation procedure, based on which a novel downlink beamforming design is presented. By separating the subpaths for different users based on the spatial information and the hidden sparsity of the physical channel, we construct near-orthogonal virtual channels in the beamforming design. Furthermore, we derive a sum-rate expression and its approximations for the proposed system. Based on these closed-form rate expressions, we develop two low-complexity beam selection schemes and carry out asymptotic analysis to provide valuable insights on the system design. Numerical results demonstrate a significant performance improvement of our proposed algorithm over the state-of-the-art beamforming approach.

Citations (20)

Summary

We haven't generated a summary for this paper yet.