Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linearizations of rational matrices from general representations (2003.02934v1)

Published 5 Mar 2020 in math.NA and cs.NA

Abstract: We construct a new family of linearizations of rational matrices $R(\lambda)$ written in the general form $R(\lambda)= D(\lambda)+C(\lambda)A(\lambda){-1}B(\lambda)$, where $D(\lambda)$, $C(\lambda)$, $B(\lambda)$ and $A(\lambda)$ are polynomial matrices. Such representation always exists and are not unique. The new linearizations are constructed from linearizations of the polynomial matrices $D(\lambda)$ and $A(\lambda)$, where each of them can be represented in terms of any polynomial basis. In addition, we show how to recover eigenvectors, when $R(\lambda)$ is regular, and minimal bases and minimal indices, when $R(\lambda)$ is singular, from those of their linearizations in this family.

Citations (3)

Summary

We haven't generated a summary for this paper yet.