Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explainable and Scalable Machine-Learning Algorithms for Detection of Autism Spectrum Disorder using fMRI Data (2003.01541v1)

Published 2 Mar 2020 in q-bio.NC, cs.LG, and stat.ML

Abstract: Diagnosing Autism Spectrum Disorder (ASD) is a challenging problem, and is based purely on behavioral descriptions of symptomology (DSM-5/ICD-10), and requires informants to observe children with disorder across different settings (e.g. home, school). Numerous limitations (e.g., informant discrepancies, lack of adherence to assessment guidelines, informant biases) to current diagnostic practices have the potential to result in over-, under-, or misdiagnosis of the disorder. Advances in neuroimaging technologies are providing a critical step towards a more objective assessment of the disorder. Prior research provides strong evidence that structural and functional magnetic resonance imaging (MRI) data collected from individuals with ASD exhibit distinguishing characteristics that differ in local and global spatial, and temporal neural-patterns of the brain. Our proposed deep-learning model ASD-DiagNet exhibits consistently high accuracy for classification of ASD brain scans from neurotypical scans. We have for the first time integrated traditional machine-learning and deep-learning techniques that allows us to isolate ASD biomarkers from MRI data sets. Our method, called Auto-ASD-Network, uses a combination of deep-learning and Support Vector Machines (SVM) to classify ASD scans from neurotypical scans. Such interpretable models would help explain the decisions made by deep-learning techniques leading to knowledge discovery for neuroscientists, and transparent analysis for clinicians.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Taban Eslami (2 papers)
  2. Joseph S. Raiker (1 paper)
  3. Fahad Saeed (12 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.