Mean-field entanglement transitions in random tree tensor networks (2003.01138v2)
Abstract: Entanglement phase transitions in quantum chaotic systems subject to projective measurements and in random tensor networks have emerged as a new class of critical points separating phases with different entanglement scaling. We propose a mean-field theory of such transitions by studying the entanglement properties of random tree tensor networks. As a function of bond dimension, we find a phase transition separating area-law from logarithmic scaling of the entanglement entropy. Using a mapping onto a replica statistical mechanics model defined on a Cayley tree and the cavity method, we analyze the scaling properties of such transitions. Our approach provides a tractable, mean-field-like example of an entanglement transition. We verify our predictions numerically by computing directly the entanglement of random tree tensor network states.
Collections
Sign up for free to add this paper to one or more collections.