Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the Global Convergence of Training Deep Linear ResNets

Published 2 Mar 2020 in cs.LG, math.OC, and stat.ML | (2003.01094v1)

Abstract: We study the convergence of gradient descent (GD) and stochastic gradient descent (SGD) for training $L$-hidden-layer linear residual networks (ResNets). We prove that for training deep residual networks with certain linear transformations at input and output layers, which are fixed throughout training, both GD and SGD with zero initialization on all hidden weights can converge to the global minimum of the training loss. Moreover, when specializing to appropriate Gaussian random linear transformations, GD and SGD provably optimize wide enough deep linear ResNets. Compared with the global convergence result of GD for training standard deep linear networks (Du & Hu 2019), our condition on the neural network width is sharper by a factor of $O(\kappa L)$, where $\kappa$ denotes the condition number of the covariance matrix of the training data. We further propose a modified identity input and output transformations, and show that a $(d+k)$-wide neural network is sufficient to guarantee the global convergence of GD/SGD, where $d,k$ are the input and output dimensions respectively.

Citations (37)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.