Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Internal Boundary between Entanglement and Separability Within a Quantum State (2003.00607v2)

Published 1 Mar 2020 in quant-ph

Abstract: Quantum states are the key mathematical objects in quantum mechanics, and entanglement lies at the heart of the nascent fields of quantum information processing and computation. However, there has not been a general, necessary and sufficient, and operational separability condition to determine whether an arbitrary quantum state is entangled or separable. In this paper, we show that whether a quantum state is entangled or not is determined by a threshold within the quantum state. We first introduce the concept of \emph{finer} and \emph{optimal} separable states based on the properties of separable states in the role of higher-level witnesses. Then we show that any bipartite quantum state can be decomposed into a convex mixture of its optimal entangled state and its optimal separable state. Furthermore, we show that whether an arbitrary quantum state is entangled or separable, as well as positive partial transposition (PPT) or not, is determined by the robustness of its optimal entangled state to its optimal separable state with reference to a crucial threshold. Moreover, for an arbitrary quantum state, we provide operational algorithms to obtain its optimal entangled state, its optimal separable state, its best separable approximation (BSA) decomposition, and its best PPT approximation decomposition while it was an open question that how to calculate the BSA in high-dimension systems.

Summary

We haven't generated a summary for this paper yet.