Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A (probably) optimal algorithm for Bisection on bounded-treewidth graphs (2002.12706v2)

Published 28 Feb 2020 in cs.DS

Abstract: The maximum/minimum bisection problems are, given an edge-weighted graph, to find a bipartition of the vertex set into two sets whose sizes differ by at most one, such that the total weight of edges between the two sets is maximized/minimized. Although these two problems are known to be NP-hard, there is an efficient algorithm for bounded-treewidth graphs. In particular, Jansen et al. (SIAM J. Comput. 2005) gave an $O(2tn3)$-time algorithm when given a tree decomposition of width $t$ of the input graph, where $n$ is the number of vertices of the input graph. Eiben et al. (ESA 2019) improved the dependency of $n$ in the running time by giving an $O(8tt5n2\log n)$-time algorithm. Moreover, they showed that there is no $O(n{2-\varepsilon})$-time algorithm for trees under some reasonable complexity assumption. In this paper, we show an $O(2t(tn)2)$-time algorithm for both problems, which is asymptotically tight to their conditional lower bound. We also show that the exponential dependency of the treewidth is asymptotically optimal under the Strong Exponential Time Hypothesis. Finally, we discuss the (in)tractability of both problems with respect to special graph classes.

Citations (2)

Summary

We haven't generated a summary for this paper yet.