Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decentralized Federated Learning via SGD over Wireless D2D Networks (2002.12507v1)

Published 28 Feb 2020 in cs.IT, cs.NI, eess.SP, and math.IT

Abstract: Federated Learning (FL), an emerging paradigm for fast intelligent acquisition at the network edge, enables joint training of a machine learning model over distributed data sets and computing resources with limited disclosure of local data. Communication is a critical enabler of large-scale FL due to significant amount of model information exchanged among edge devices. In this paper, we consider a network of wireless devices sharing a common fading wireless channel for the deployment of FL. Each device holds a generally distinct training set, and communication typically takes place in a Device-to-Device (D2D) manner. In the ideal case in which all devices within communication range can communicate simultaneously and noiselessly, a standard protocol that is guaranteed to converge to an optimal solution of the global empirical risk minimization problem under convexity and connectivity assumptions is Decentralized Stochastic Gradient Descent (DSGD). DSGD integrates local SGD steps with periodic consensus averages that require communication between neighboring devices. In this paper, wireless protocols are proposed that implement DSGD by accounting for the presence of path loss, fading, blockages, and mutual interference. The proposed protocols are based on graph coloring for scheduling and on both digital and analog transmission strategies at the physical layer, with the latter leveraging over-the-air computing via sparsity-based recovery.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hong Xing (29 papers)
  2. Osvaldo Simeone (326 papers)
  3. Suzhi Bi (63 papers)
Citations (75)