Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How Much Can A Retailer Sell? Sales Forecasting on Tmall (2002.11940v1)

Published 27 Feb 2020 in cs.LG, stat.AP, and stat.ML

Abstract: Time-series forecasting is an important task in both academic and industry, which can be applied to solve many real forecasting problems like stock, water-supply, and sales predictions. In this paper, we study the case of retailers' sales forecasting on Tmall|the world's leading online B2C platform. By analyzing the data, we have two main observations, i.e., sales seasonality after we group different groups of retails and a Tweedie distribution after we transform the sales (target to forecast). Based on our observations, we design two mechanisms for sales forecasting, i.e., seasonality extraction and distribution transformation. First, we adopt Fourier decomposition to automatically extract the seasonalities for different categories of retailers, which can further be used as additional features for any established regression algorithms. Second, we propose to optimize the Tweedie loss of sales after logarithmic transformations. We apply these two mechanisms to classic regression models, i.e., neural network and Gradient Boosting Decision Tree, and the experimental results on Tmall dataset show that both mechanisms can significantly improve the forecasting results.

Citations (14)

Summary

We haven't generated a summary for this paper yet.