Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of diversity-accuracy tradeoff in image captioning (2002.11848v1)

Published 27 Feb 2020 in cs.CL and cs.CV

Abstract: We investigate the effect of different model architectures, training objectives, hyperparameter settings and decoding procedures on the diversity of automatically generated image captions. Our results show that 1) simple decoding by naive sampling, coupled with low temperature is a competitive and fast method to produce diverse and accurate caption sets; 2) training with CIDEr-based reward using Reinforcement learning harms the diversity properties of the resulting generator, which cannot be mitigated by manipulating decoding parameters. In addition, we propose a new metric AllSPICE for evaluating both accuracy and diversity of a set of captions by a single value.

Citations (11)

Summary

We haven't generated a summary for this paper yet.