Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decidability of Sample Complexity of PAC Learning in finite setting (2002.11519v1)

Published 26 Feb 2020 in cs.LG, cs.LO, and stat.ML

Abstract: In this short note we observe that the sample complexity of PAC machine learning of various concepts, including learning the maximum (EMX), can be exactly determined when the support of the probability measures considered as models satisfies an a-priori bound. This result contrasts with the recently discovered undecidability of EMX within ZFC for finitely supported probabilities (with no a priori bound). Unfortunately, the decision procedure is at present, at least doubly exponential in the number of points times the uniform bound on the support size.

Citations (3)

Summary

We haven't generated a summary for this paper yet.