Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Space Efficient Representations of Finite Groups (2002.11391v1)

Published 26 Feb 2020 in cs.DS and cs.SC

Abstract: The Cayley table representation of a group uses $\mathcal{O}(n2)$ words for a group of order $n$ and answers multiplication queries in time $\mathcal{O}(1)$. It is interesting to ask if there is a $o(n2)$ space representation of groups that still has $\mathcal{O}(1)$ query-time. We show that for any $\delta$, $\frac{1}{\log n} \le \delta \le 1$, there is an $\mathcal{O}(\frac{n{1 +\delta}}{\delta})$ space representation for groups of order $n$ with $\mathcal{O}(\frac{1}{\delta})$ query-time. We also show that for Z-groups, simple groups and several group classes defined in terms of semidirect product, there are linear space representations with at most logarithmic query-time. Farzan and Munro (ISSAC'06) defined a model for group representation and gave a succinct data structure for abelian groups with constant query-time. They asked if their result can be extended to categorically larger group classes. We construct data structures in their model for Hamiltonian groups and some other classes of groups with constant query-time.

Citations (1)

Summary

We haven't generated a summary for this paper yet.