Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Acceleration for Compressed Gradient Descent in Distributed and Federated Optimization (2002.11364v2)

Published 26 Feb 2020 in math.OC, cs.DC, and cs.LG

Abstract: Due to the high communication cost in distributed and federated learning problems, methods relying on compression of communicated messages are becoming increasingly popular. While in other contexts the best performing gradient-type methods invariably rely on some form of acceleration/momentum to reduce the number of iterations, there are no methods which combine the benefits of both gradient compression and acceleration. In this paper, we remedy this situation and propose the first accelerated compressed gradient descent (ACGD) methods. In the single machine regime, we prove that ACGD enjoys the rate $O\Big((1+\omega)\sqrt{\frac{L}{\mu}}\log \frac{1}{\epsilon}\Big)$ for $\mu$-strongly convex problems and $O\Big((1+\omega)\sqrt{\frac{L}{\epsilon}}\Big)$ for convex problems, respectively, where $\omega$ is the compression parameter. Our results improve upon the existing non-accelerated rates $O\Big((1+\omega)\frac{L}{\mu}\log \frac{1}{\epsilon}\Big)$ and $O\Big((1+\omega)\frac{L}{\epsilon}\Big)$, respectively, and recover the optimal rates of accelerated gradient descent as a special case when no compression ($\omega=0$) is applied. We further propose a distributed variant of ACGD (called ADIANA) and prove the convergence rate $\widetilde{O}\Big(\omega+\sqrt{\frac{L}{\mu}}+\sqrt{\big(\frac{\omega}{n}+\sqrt{\frac{\omega}{n}}\big)\frac{\omega L}{\mu}}\Big)$, where $n$ is the number of devices/workers and $\widetilde{O}$ hides the logarithmic factor $\log \frac{1}{\epsilon}$. This improves upon the previous best result $\widetilde{O}\Big(\omega + \frac{L}{\mu}+\frac{\omega L}{n\mu} \Big)$ achieved by the DIANA method of Mishchenko et al. (2019). Finally, we conduct several experiments on real-world datasets which corroborate our theoretical results and confirm the practical superiority of our accelerated methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zhize Li (30 papers)
  2. Dmitry Kovalev (46 papers)
  3. Xun Qian (20 papers)
  4. Peter Richtárik (241 papers)
Citations (133)

Summary

We haven't generated a summary for this paper yet.