Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rewriting History with Inverse RL: Hindsight Inference for Policy Improvement (2002.11089v1)

Published 25 Feb 2020 in cs.LG, cs.AI, cs.RO, and stat.ML

Abstract: Multi-task reinforcement learning (RL) aims to simultaneously learn policies for solving many tasks. Several prior works have found that relabeling past experience with different reward functions can improve sample efficiency. Relabeling methods typically ask: if, in hindsight, we assume that our experience was optimal for some task, for what task was it optimal? In this paper, we show that hindsight relabeling is inverse RL, an observation that suggests that we can use inverse RL in tandem for RL algorithms to efficiently solve many tasks. We use this idea to generalize goal-relabeling techniques from prior work to arbitrary classes of tasks. Our experiments confirm that relabeling data using inverse RL accelerates learning in general multi-task settings, including goal-reaching, domains with discrete sets of rewards, and those with linear reward functions.

Citations (84)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com