Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Double quasi-Poisson algebras are pre-Calabi-Yau (2002.10495v2)

Published 24 Feb 2020 in math.QA

Abstract: In this article we prove that double quasi-Poisson algebras, which are non-commutative analogues of quasi-Poisson manifolds, naturally give rise to pre-Calabi-Yau algebras. This extends one of the main results in 11, where a relationship between pre-Calabi-Yau algebras and double Poisson algebras was found. However, a major difference between the pre-Calabi-Yau algebra constructed in the mentioned articles and the one constructed in this work is that the higher multiplications indexed by even integers of the underlying $A_{\infty}$-algebra structure of the pre-Calabi-Yau algebra associated to a double quasi-Poisson algebra do not vanish, but are given by nice cyclic expressions multiplied by explicitly determined coefficients involving the Bernoulli numbers.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.