Papers
Topics
Authors
Recent
2000 character limit reached

Improving BERT Fine-Tuning via Self-Ensemble and Self-Distillation

Published 24 Feb 2020 in cs.CL and cs.LG | (2002.10345v1)

Abstract: Fine-tuning pre-trained LLMs like BERT has become an effective way in NLP and yields state-of-the-art results on many downstream tasks. Recent studies on adapting BERT to new tasks mainly focus on modifying the model structure, re-designing the pre-train tasks, and leveraging external data and knowledge. The fine-tuning strategy itself has yet to be fully explored. In this paper, we improve the fine-tuning of BERT with two effective mechanisms: self-ensemble and self-distillation. The experiments on text classification and natural language inference tasks show our proposed methods can significantly improve the adaption of BERT without any external data or knowledge.

Citations (60)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.