Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving STDP-based Visual Feature Learning with Whitening (2002.10177v1)

Published 24 Feb 2020 in cs.CV, cs.LG, and cs.NE

Abstract: In recent years, spiking neural networks (SNNs) emerge as an alternative to deep neural networks (DNNs). SNNs present a higher computational efficiency using low-power neuromorphic hardware and require less labeled data for training using local and unsupervised learning rules such as spike timing-dependent plasticity (STDP). SNN have proven their effectiveness in image classification on simple datasets such as MNIST. However, to process natural images, a pre-processing step is required. Difference-of-Gaussians (DoG) filtering is typically used together with on-center/off-center coding, but it results in a loss of information that is detrimental to the classification performance. In this paper, we propose to use whitening as a pre-processing step before learning features with STDP. Experiments on CIFAR-10 show that whitening allows STDP to learn visual features that are closer to the ones learned with standard neural networks, with a significantly increased classification performance as compared to DoG filtering. We also propose an approximation of whitening as convolution kernels that is computationally cheaper to learn and more suited to be implemented on neuromorphic hardware. Experiments on CIFAR-10 show that it performs similarly to regular whitening. Cross-dataset experiments on CIFAR-10 and STL-10 also show that it is fairly stable across datasets, making it possible to learn a single whitening transformation to process different datasets.

Citations (7)

Summary

We haven't generated a summary for this paper yet.