Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bruhat inversions in Weyl groups and torsion-free classes over preprojective algebras (2002.09205v2)

Published 21 Feb 2020 in math.RT, math.CO, and math.RA

Abstract: For an element $w$ of the simply-laced Weyl group, Buan-Iyama-Reiten-Scott defined a subcategory $\mathcal{F}(w)$ of a module category over a preprojective algebra of Dynkin type. This paper aims at studying categorical properties of $\mathcal{F}(w)$ via its connection with the root system. We show that by taking dimension vectors, simple objects in $\mathcal{F}(w)$ bijectively correspond to Bruhat inversion roots of $w$. As an application, we obtain a combinatorial criterion for $\mathcal{F}(w)$ to satisfy the Jordan-H\"older property (JHP). To achieve this, we develop a method to find simple objects in a general torsion-free class by using a brick sequence associated to a maximal green sequence of it. For type A case, we give a diagrammatic construction of simple objects, and show that (JHP) can be characterized via a forest-like permutation, introduced by Bousquet-M\'elou and Butler in the study of Schubert varieties.

Summary

We haven't generated a summary for this paper yet.