Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse principal component regression via singular value decomposition approach (2002.09188v1)

Published 21 Feb 2020 in stat.ML, cs.LG, and stat.ME

Abstract: Principal component regression (PCR) is a two-stage procedure: the first stage performs principal component analysis (PCA) and the second stage constructs a regression model whose explanatory variables are replaced by principal components obtained by the first stage. Since PCA is performed by using only explanatory variables, the principal components have no information about the response variable. To address the problem, we propose a one-stage procedure for PCR in terms of singular value decomposition approach. Our approach is based upon two loss functions, a regression loss and a PCA loss, with sparse regularization. The proposed method enables us to obtain principal component loadings that possess information about both explanatory variables and a response variable. An estimation algorithm is developed by using alternating direction method of multipliers. We conduct numerical studies to show the effectiveness of the proposed method.

Citations (4)

Summary

We haven't generated a summary for this paper yet.