Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Taurus: A Data Plane Architecture for Per-Packet ML (2002.08987v2)

Published 12 Feb 2020 in cs.NI, cs.LG, and cs.PF

Abstract: Emerging applications -- cloud computing, the internet of things, and augmented/virtual reality -- demand responsive, secure, and scalable datacenter networks. These networks currently implement simple, per-packet, data-plane heuristics (e.g., ECMP and sketches) under a slow, millisecond-latency control plane that runs data-driven performance and security policies. However, to meet applications' service-level objectives (SLOs) in a modern data center, networks must bridge the gap between line-rate, per-packet execution and complex decision making. In this work, we present the design and implementation of Taurus, a data plane for line-rate inference. Taurus adds custom hardware based on a flexible, parallel-patterns (MapReduce) abstraction to programmable network devices, such as switches and NICs; this new hardware uses pipelined SIMD parallelism to enable per-packet MapReduce operations (e.g., inference). Our evaluation of a Taurus switch ASIC -- supporting several real-world models -- shows that Taurus operates orders of magnitude faster than a server-based control plane while increasing area by 3.8% and latency for line-rate ML models by up to 221 ns. Furthermore, our Taurus FPGA prototype achieves full model accuracy and detects two orders of magnitude more events than a state-of-the-art control-plane anomaly-detection system.

Citations (70)

Summary

We haven't generated a summary for this paper yet.