Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Schoenberg-Rao distances: Entropy-based and geometry-aware statistical Hilbert distances (2002.08345v2)

Published 19 Feb 2020 in cs.LG and stat.ML

Abstract: Distances between probability distributions that take into account the geometry of their sample space,like the Wasserstein or the Maximum Mean Discrepancy (MMD) distances have received a lot of attention in machine learning as they can, for instance, be used to compare probability distributions with disjoint supports. In this paper, we study a class of statistical Hilbert distances that we term the Schoenberg-Rao distances, a generalization of the MMD that allows one to consider a broader class of kernels, namely the conditionally negative semi-definite kernels. In particular, we introduce a principled way to construct such kernels and derive novel closed-form distances between mixtures of Gaussian distributions. These distances, derived from the concave Rao's quadratic entropy, enjoy nice theoretical properties and possess interpretable hyperparameters which can be tuned for specific applications. Our method constitutes a practical alternative to Wasserstein distances and we illustrate its efficiency on a broad range of machine learning tasks such as density estimation, generative modeling and mixture simplification.

Summary

We haven't generated a summary for this paper yet.