Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structured Sparsification with Joint Optimization of Group Convolution and Channel Shuffle (2002.08127v2)

Published 19 Feb 2020 in cs.CV

Abstract: Recent advances in convolutional neural networks(CNNs) usually come with the expense of excessive computational overhead and memory footprint. Network compression aims to alleviate this issue by training compact models with comparable performance. However, existing compression techniques either entail dedicated expert design or compromise with a moderate performance drop. In this paper, we propose a novel structured sparsification method for efficient network compression. The proposed method automatically induces structured sparsity on the convolutional weights, thereby facilitating the implementation of the compressed model with the highly-optimized group convolution. We further address the problem of inter-group communication with a learnable channel shuffle mechanism. The proposed approach can be easily applied to compress many network architectures with a negligible performance drop. Extensive experimental results and analysis demonstrate that our approach gives a competitive performance against the recent network compression counterparts with a sound accuracy-complexity trade-off.

Citations (1)

Summary

We haven't generated a summary for this paper yet.