Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nearest $Ω$-stable matrix via Riemannian optimization (2002.07052v2)

Published 17 Feb 2020 in math.NA, cs.NA, and math.OC

Abstract: We study the problem of finding the nearest $\Omega$-stable matrix to a certain matrix $A$, i.e., the nearest matrix with all its eigenvalues in a prescribed closed set $\Omega$. Distances are measured in the Frobenius norm. An important special case is finding the nearest Hurwitz or Schur stable matrix, which has applications in systems theory. We describe a reformulation of the task as an optimization problem on the Riemannian manifold of orthogonal (or unitary) matrices. The problem can then be solved using standard methods from the theory of Riemannian optimization. The resulting algorithm is remarkably fast on small-scale and medium-scale matrices, and returns directly a Schur factorization of the minimizer, sidestepping the numerical difficulties associated with eigenvalues with high multiplicity.

Citations (9)

Summary

We haven't generated a summary for this paper yet.