Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DeepLight: Deep Lightweight Feature Interactions for Accelerating CTR Predictions in Ad Serving (2002.06987v3)

Published 17 Feb 2020 in cs.LG, cs.IR, stat.AP, and stat.ML

Abstract: Click-through rate (CTR) prediction is a crucial task in online display advertising. The embedding-based neural networks have been proposed to learn both explicit feature interactions through a shallow component and deep feature interactions using a deep neural network (DNN) component. These sophisticated models, however, slow down the prediction inference by at least hundreds of times. To address the issue of significantly increased serving delay and high memory usage for ad serving in production, this paper presents \emph{DeepLight}: a framework to accelerate the CTR predictions in three aspects: 1) accelerate the model inference via explicitly searching informative feature interactions in the shallow component; 2) prune redundant layers and parameters at intra-layer and inter-layer level in the DNN component; 3) promote the sparsity of the embedding layer to preserve the most discriminant signals. By combining the above efforts, the proposed approach accelerates the model inference by 46X on Criteo dataset and 27X on Avazu dataset without any loss on the prediction accuracy. This paves the way for successfully deploying complicated embedding-based neural networks in production for ad serving.

Citations (4)

Summary

We haven't generated a summary for this paper yet.